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Build-up of laser oscillation is expressed in terms of the probabilities p,(t) that 

there are n photons in the laser cavity. These probabilities obey a coupled set of 

difference-differential equations of motion. The method and results of ‘ numerical 

integration of these equations are given here for the initial condition that no photons 

exist (radiation field vacuum). Corresponding equations of motion for the moments of 

the photon distribution are derived, and their time dependences are given. 

A movie showing the time development of the Pn from an initial vacuum is given 

on the corners of this issue and can be seen by flipping through the pages. 

M. Sargent I11 is with the Optical Sciences Center, The University of Arizona, 
Tucson, Arizona 8572 1. 

M. 0. Scully is with the Optical Sciences Center and the Department of Physics, 
The University of Arizona, Tucson, Arizona 85721, and with the Department of Physics 
and Materials Science Center, Massachusetts Institute of Technology, Cambridge, 
Massachusetts. 

W.E. Lamb, Jr., is with the Department of Physics, Yale University, New Haven, . 

.n/ G f?- 03-0 0 V-034- 
Connecticut 06520. 

. i  

https://ntrs.nasa.gov/search.jsp?R=19700031883 2018-07-24T09:47:17+00:00Z



Sargent, SCUIIY, Lamb-2 

Introduction 

For many purposes, a classical, transverse electric field expression 

E(z,t) = E(t) cos[vt + @(t)l sin(Kz) (1 1 

ria \ provides an adequate description of laser oscillation (Fig. 1). The wave number is 

K = nnlL (2) 

for.some integer n, where L is the length of the cavity. Under transient conditions, the 

amplitude E(t) and phase @(t) may vary slowly at a rate on the order of v/Q, where Q is 

the quality factor of the cavity. According to a treatment by Lamb‘ in which the atoms 

interact with the classical field according to the laws of quantum mechanics, the . 

amplitude E(t) obeys an equation of motion .. 

i ( t )  = E(t)[a - pE(t)2]. (3) 

Here a is the linear “net gain” coefficient, that is, the coefficient for the difference 

between the linear gain of the medium and the loss of the cavity. The coefficient p leads 

to a reduction in the net gain and results from saturation of the medium.From 

Eq. (3) one obtains the steady-state intensity I as ’ 

- .  - - .  

In general the semiclassical theory has enjoyed excellent quantitative agreement with 

experiment. 

There are, however, several features of laser operation that cannot be understood 

with a theory iv which the electric field is treated chsically. First, the linewidth of the 

field is zero classically although physically (and quantum mechanically) it has a small, 

frnie value. Second, the field cannot build up from a zero value (E = 0) according to the 
? ?  
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equation of motion (Eq. (3)). Physically, the laser does build up from zero (photon 

vacuum) because of spontaneous emission, a quantum mechanical phenomenon. Third, 

the usual semiclassical treatment does not provide the statistical distribution of energy 

stored in the laser cavity, that is, the photon statistics. These statistics are required for a 

proper discussion of the distribution of photoelectrons ejected in a photodetector by 

laser light. Fourth, Eq. (4) predicts a sharp threshold whereas observation reveals a 

gradual change.2 

In this paper, we discuss the buildup of oscillation from the vacuum and some 

aspects of the photon statistics using results from a fully quantum mechanical theory of 

the laser.j Although the derivations contained in that work require the use of quantum 

statistical techniques, the results that we will use in the present paper have a simple 

.physical interpretation, and our discussion can be followed by those having little 

exposure to quantum mechanics and laser theory. 
- 

Photon Number Probabilities 

Most of our discussion involves the probability p,(t) that there are n photons in 

the laser cavity. For example, if no photons are present, 

po = I and p, = 0 for n > 0. 

The photon distribution for filtered thermal light is given by 
- 

PIl = exp[-rgiR/(kBT).]- 11 - exp[-fIR/(kgT)]l, 

- 

where S2 is the angular frequency of the radiation, kB is Boltzmann's constant, and T is 

the absolute temperature. The statistical distribution for coherent light is a Poisson 

distribution for which 
- _  - - - - -  - 
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---where the average number of photons 

<n) = c n P,* 
n=O 

The statistics for thermal and coherent light are plotted in Fig. 2. 
$97 

In a laser, the photon distribution is determined by the steady-state solution to the 

equations of motion for the photon number probabilities 

fin(t) = - [ A  - B(n+l>] (n+l)p,(t> + [A - Bn]n pn_,lt) 

.- - . - 

Here A is the linear gain coefficient, C is the loss coefficient (the semiclassical coefficient 

a in Eq. (3) corresponds to the difference %(A-C)), and B is the saturation coefficient5 (p 

m Eq. (3) corresponds to (1 /S)(biVy* e,VB). Under “Numerical Results” we will discuss a 

numerical analysis of these equations as they describe the buildup of laser oscillation 

from the vacuum (Eq. (5 ) ) .  First, however, we will summarize the results obtained in Ref. 

3 when the steadystate condition 
_ _  _ _  . . _. . __ 

was imposed. 

For this, the equations of motion (Eq. (9)) reduce to the equivalent first-order 

difference equations 

[A - Bn]n P,-~ - Cnpn = 0 

... 

[A - B(n+l)f (n+l)pn - C(n+l)pn+l = 0. (1 2) 

This reduction of Eq. (9) can be seen by inspection of Fig. 3 in which for steady state 

the flow of probability due to stimulated emission ((A-Bn)iip,-l -like terms) is balanced 
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by that due to cavity losses (Cnp,-like terms). The solution of either equation is 

n 

k=O 

1 
= Z- [(A-Bk)/C], Pn 

where the normalization constant is given .by 

n w -  

2 = 1 1 [ (A-Bk)/C].  
n=O k=O 

The distribution of Eq. (13) is graphed in Fig. 4 for three values of excitation. 

Below threshold the nonlinear terms with B can be dropped, and the distribution 

of Eq. (13) becomes that for a blackbody 

= [l - A / C ]  (A/C)n 
’ .  Pn 

for which the effective temperature T is defined by (compare Eq. (15) . .  with Eq. (6)) 

Above threshold, one finds from Eq. (8) that 

n Q .D 

(n) = [(A/B) - 1 1 pn - (C/B) Z [A - B(n + 1 )I C1 Z1 7 [(A - Bk)/C] n=O n=O k=O 

where the approximation in the last line is valid when h) %- 1. This relation corresponds 

to the semiclassical intensity of Eq. (4). Using Eq. (17) in Eq. (7), one calculates the 

graph in Fig. 5 in which laser and Poisson distributions are compared. It can be shown 

using an exact theory that as the gain is increased indefinitely, the laser distribution 

c; 
t i4  * 

._ 
approaches that of Poisson. 

-2 * 
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Moments of the Photon Distribiitioii 

The kth moment of the distribution is defined by 

. .. ~. 

The first of these (k = 1) is just the average number of photons 0 introduced earlier in 

Eq. (8). The energy in the laser cavity is proportional to this moment. Furthermore, the 

classical energy is proportional to  the electric field intensity. In the classical limit where 

G.1> S 1, one cap equate the two values for the energy and obtain the relation 

. -  

-where V is the volume of the cavity and E2 is given by Eq. (4). The variance u is given 
_ .  

bY 

The equations of motion for the moments are determined by those for the 

probabilities pn. Using Eqs.'(9) and (1 8), ' 

- _- . . __ - - _ _  - _ _ _ _  

(P m 
= - 1 [A-B(n+l)] (n+l)n k pn + 1 [A-Bn] n .  k+l P, -~  

n=O n=l 

The n = 0 terms vanish. Hence, the frrst and second summations can be combined 

provided that in the second the subscript n -I is renamed n, n is renamed n + 1, and the 

lower limit is changed to 0. Similarly, one can combine the third and fourth summations 

by renaming n + 1 to n, and by changing the limit 0 to 1 in the fourth. Then 
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k W 

- d (nk(t)) = 1 [A - B(n+l)] (n+l) [(n+l)k - n 3 p, dt n=O 
k w .  

k .  - c 1 nln  - (n-1) 3 pn. 
n=l 

-. - 

Specifically, for t5e first moment (k = l), 

= (A - C) <n) + A - B[<ny + 2 (n) + 1 3 .  

For the second 

. (23) 

=2(A- C)h2) + (3A + C)W + A -  B[2h3) + 5b2) + 4 0  + 11. (24) 

Using the binomial theorem in Eq. (22), the general equation is 

m 

&- <nk> = 1 dt [A - B(n+l)] 1 
n=O 

QD kf (1) k-l-i  i+l -a (- 1) n .  
n=O i=O 

.- 
I 

In the classical limit, the equation of motion for G.1> in Eq. (22) should have the 

same form as that for the intensity E2 because of the energy relation in Eq. (19). From 

Es. (31, 
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. In this limit, one can neglect 1 compared with' 0 and 0 compared with h2). 
Furthermore, the distribution becomes sufficiently peaked so that it acts like a delta 

function, that is, 

Î 

(nj2 = c c nn'PnPnc = c c nn'Pngnn, I 

n=O n'=O n=O n'=O 

Hence, Eq. (23) for 0 reduces to 

_ _  - --__ 

(6) = (A - C)(n) - B(n>2 (27) 
- - - -  - _ _  c - - -- -- - - 

. which has the form of Eq. (25) with h) related to E2 by Eq. (19). The coefficient 

relations are the Same as those given for Eq. (9). For small 0, Eq. (23) reduces to (id 2 

A - B and predicts buildup from noise, a feature not contained in the semiclassical Eq. 

(26). We now turn to a numerical analysis of both the .equations of motion for the 

probabilities pn (Eq. (9)), and those for the moments hk) (Eq. (24)). 

_ _  .-. _. - - . _- - - - - . . -  

Numerical Results - !C. - 

In this section we discuss the numerical analysis of the difference-differential 

. equations, Eqs. (9) and (25),  for the photon number probabilities pn and moments (k), 

respectively, and give specific results for buildup from vacuum. Both sets of equations are 

infinite in number and must be truncated to the first N terms for numerical integration. 

Because the Nth term (pN or hN)) depends on the (N + 1)th term, an estimate of the 

latter is required. 

For the pn, a satisfactory estimate is giien by 
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More sophisticated formulas sometimes yield a pN+I greater than pN and subsequent 

divergence. Here the number of terms, N, is taken sufficiently large so that pN is less 

than some prescribed number, say 1 (J6. The initial vacuum is described by the conditions 

-* 

Hence, the cutoff index N can be taken very small initially and then gradually increased 

as the corresponding moments assume values larger than the cutoff minimum. In the 

course of .numerical integration, some pn beyond the peak but before the cutoff pN 

acquire either negative values or values greater than a predecessor. Because these values 

are nonphysical and lead rapidly to. instability, they must be recalculated starting with 

the fEst erroneous entry and concluding with the cutoff pN, inclusively. For this purpose 

the extrapolation formula, Eq. (28), has proved to be satisfactory. 

Because of the sensitive relationship between the equations and the extrapolation 

procedure, a simple first-order integration method containing only one extrapolation 

value per pn has been used. Specifically, we have taken 

where the time interval h = 0.001 5 psec for a cavity bandwidth of 1 MHz. 

In Fig. 6 curves of pn vs n are graphed for representative times, and for an average 

steadystate photon number (n) = 50. A more complete presentation of these results has 

been given at several conferences in the form of a computer movie.6 In Fig. 7 similar 

curves are shown for the larger value (n) = 267. The corresponding computer movie is 

given in the upper right-hand comers of this issue and can be seen by thumbing through 

the journal. For both values of 0 the peak of the distribution starts with po and 

progresses outward; it does not originate at some higher value of n. For (n) = 50, the 
- .- 

peak starts out from po a t  -8 psec, while for (n) = 267, it starts later at -17 psec. The 

steadystate distributions are attained within 1% in 30 psec for 0 = 50 and in 45 psec 

for 0 = 267. -. 
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A suitable truncation procedure for the'moment equations, Eq. (25), is based on 

the numerical triangle shown for N 

and given 'by setting the last difference to zero, that is, 

2 in Fig. 8. There an estimate for (n3> is required 
_ i  

In general, 

. .. 

In Fig. 9 time integrations of (n> are given for several truncation levels (N = 2, 3, 

and 4) along with that resulting from the pn integration. In Fig. 10 time integrations of 

- the  mean square deviation [b2> .. W2 I '/z are given using the same scheme. Note that the 

deviation initially tends to follow that (an exponential) for thermal light and overshoots 

the final value. It then approaches a value more characteristic of coherent light as 

saturation plays an increasingly important role. 

s 
\o 

63 
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Figure Captions 

Fig. 1. Diagram of laser depicting oscillation of transverse electric field E(z,t) given by 

Es. (1). 

k 

Fig. 2. Graphs of photon number probabilities Pn for blackbody (solid line) and 

coherent (dashed line) radiation. 

Fig. 3. Flow of probability due to stimulated emission (?) and damping (&) for finding 

n photons in laser cavity. 

Fig. 4. Graph of steady-state solution of Eq. (13) for three excitation levels: below 

(solid line), at (dot-dashed line), and above threshold. (dashed line). 

Fig. 5 .  Graphs of photon number probabilites Pn vs photon number for a laser 20% 

above threshold (solid line) and for a Poisson distribution (dashed line) with the 

same average number of photons (see Eq. (7)). 

Fig. 6 .  Graph of photon number probabilities Pn obtained at times (in order of 

increasing (n)) 2, 5 ,  8, 11, 14, 17, 21 and 24 psec, starting with'an initial vacuum. 

Laser parameters used in integration of Eq. (9) are A = 1.2, B = 0.004, C = 1.0, 

yielding by Eq. (1 7) an average steady-state photon number (n) = (A-C)/B = 50. 

- -  _ -  . - - - _ .  - - __ 
Fig. 7. Graph of photon number probabilites Pn vs photon number n at times (in order 

of increasing (n)) 5 ,  10, 15, 20, 25, 30, 35, 40, 45, 50 and 55 p sec. Parameters are 

the same as for Fig. 6 except that the saturation parameter B = A/1600 = 0.00075, 

yielding 0 = 267. The choice A/B = 1600 causes the Pn to equal zero when n > 
1600 (see Eq. (13)). The time development shown here is depicted more 

completely by the computer movie printed in the upper right-hand corner of this 

issue. It can be seen by thumbing through the pages. 
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Fig. 8. Numerical triangle used to estimate value for b3> in equation of motion for (n2> 

when the desired truncated set of moment equations includes only (19 and (n2>. 

One sets the last difference equal to zero as given in Eq.‘(31). The estimate for 

is given in terms of the first N moments by Eq. (32). 

Fig. 9. Graphs of average photon number in t h e  given by integration of truncated sets 

of N equations of motion from Eq. (25)  and by the Pn(‘‘-’’) integration according 

to Eq. (9). 

Fig. 10. Graphs of mean square deviation in time obtained using the scheme for Fig. 9. 
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